Verkauf durch Sack Fachmedien

Hanawalt

Molecular Mechanisms for Repair of DNA

Part B

Medium: Buch
ISBN: 978-1-4684-2900-8
Verlag: Springer US
Erscheinungstermin: 17.11.2012
Lieferfrist: bis zu 10 Tage
The excision-repair of ultraviolet-induced lesions in DNA involves a recogni­ tion and incision step which is followed by excision of the damaged material, DNA repair resynthesis, and sealing of the fmal gap by polynucleotide ligase (e.g. Howard-Flanders, 1968). The initial incision step appears to require an endo­ nuclease which is absent in the uvrA and uvrR mutants of E. eoli K12 (Braun et al., Part A of this book). The polAl strains are deficient in DNA polymerase I activity (de Lucia and Cairns, 1969) and are partially deficient in repairing single-strand breaks in DNA (incision breaks) produced by the excision-repair process (Kanner and Hanawalt, 1970; Paterson et al., 1971). Most of the repair of incision breaks which occurs in the polAl strain appears to require DNA polymerase III (Youngs and Smith, 1973b). Thus, both DNA polymerases I and III have been implicated in the DNA repair resynthesis step of the excision-repair process. Masker et al. (1973) have shown that DNA polymer ase 11 (deficient in polB mutants, Campbell et al., 1972) is involved in UV-induced repair replication in toluene-treated cells which lack both DNA polymerase I and normal DNA replication. However, DNA polymerase 11 is probably not involved in a major way in repair processes in vivo, since wild-type or polAl cells which also contain a polR mutation are no more sensitive to UV or X-radiation than the related polB+ strains (Campbell et al., 1972; Youngs and Smith, 1973e).

Produkteigenschaften


  • Artikelnummer: 9781468429008
  • Medium: Buch
  • ISBN: 978-1-4684-2900-8
  • Verlag: Springer US
  • Erscheinungstermin: 17.11.2012
  • Sprache(n): Englisch
  • Auflage: Softcover Nachdruck of the original 1. Auflage 1975
  • Serie: Basic Life Sciences
  • Produktform: Kartoniert, Paperback
  • Gewicht: 668 g
  • Seiten: 425
  • Format (B x H x T): 155 x 235 x 24 mm
  • Ausgabetyp: Kein, Unbekannt

Autoren/Hrsg.

Herausgeber

Hanawalt, Philip

VII. Repair Models and Mechanisms.- 57. Repair Models and Mechanisms: Overview.- 58. List of Genes Affecting DNA Metabolism in Escherichia coli.- 59. Effect of Mutations in lig and polA on UV-Induced Strand Cutting in a uvrC Strain of Escherichia coli.- 60. Dependence Upon Growth Medium and the polA, polC, recA, recB, recC, and exrA Genes of Separate Branches of the uvr Gene-Dependent Excision-Repair Process in Escherichia coli K12 Cells.- 61. Near-UV Photoproduct(s) of L-Tryptophan: An Inhibitor of Medium-Dependent Repair of X-Ray-Induced Single-Strand Breaks in DNA Which Also Inhibits Replication-Gap Closure in Escherichia coli DNA.- 62. The Radiobiology of DNA Strand Breakage.- 63. Radiation-Induced Strand Breakage in DNA.- 64. DNA Repair in DNA-Polymerase-Deficient Mutants of Escherichia coli.- 65. Phleomycin-Induced DNA Lesions and Their Repair in Escherichia coli K12.- 66. Repair of Cross-Linked DNA in Escherichia coli.- 67. Recovery of the Priming Activity of DNA in X-Irradiated Escherichia coli.- VIII. Repair Processes in Diverse Systems.- 68. Repair Processes in Diverse Systems: Overview.- 69. Repair of Double-Strand Breaks in Micro coccus radiodurans.- 70. DNA Repair and Its Relation to Recombination-Deficient and Other Mutations in Bacillus subtilis.- 71. Repair of Ultraviolet Damage in Haemophilus influenzae DNA.- 72. Molecular Mechanisms for DNA Repair in the Blue-Green Algae.- 73. DNA Repair and the Genetic Control of Radiosensitivity in Yeast.- 74. Radiation-Sensitive Mutants of Yeast.- 75. X-Ray-Induced Dominant Lethality and Chromosome Breakage and Repair in a Radiosensitive Strain of Yeast.- 76. The Repair of Double-Strand Breaks in Chromosomal DNA of Yeast.- 77. The Fate of UV-Induced Pyrimidine Dimers in the Nuclear and Mitochondrial DNAs of Saccharomyces cerevisiae on Various Postirradiation Treatments and Its Influence on Survival and Cytoplasmic “Petite” Induction.- 78. Genetic Control of Radiation Sensitivity and DNA Repair in Neurospora.- 79. Enzymes of Neurospora crassa Which Attack UV-Irradiated DNA.- 80. Dictyostelium discoideum: A Valuable Eukaryotic System for Repair Studies.- 81. Absence of Pyrimidine Dimer Excision and Repair Replication in Chlamydomonas reinhardti.- 82. Absence of a Pyrimidine Dimer Repair Mechanism for Mitochondrial DNA in Mouse and Human Cells.- IX. Repair in Mammalian Cells.- 83. Repair in Mammalian Cells: Overview.- 84. Repair (or Recovery) Effects in Quiescent Chinese Hamster Cells: An Attempt at Classification.- 85. Excision-Repair in Primary Cultures of Mouse Embryo Cells and Its Decline in Progressive Passages and Established Cell Lines.- 86. Repair of Alkylated DNA in Mammalian Cells.- 87. Postreplication Repair-of DNA in UV-Irradiated Mammalian Cells.- 88. Synthesis by UV-Irradiated Human Cells of Normal-Sized DNA at Long Times After Irradiation.- 89. Effects of Caffeine on Postreplication Repair in Xeroderma Pigmentosum Cells.- 90. Inhibition of DNA Synthesis by Ultraviolet Light.- 91. Concerning Pyrimidine Dimers as “Blocks” to DNA Replication in Bacteria and Mammalian Cells.- 92. Postreplication Repair in Human Cells:. On the Presence of Gaps Opposite Dimers and Recombination.- 93. Thymine Dimer Excision by Extracts of Human Cells.- 94. Studies on DNA Repair in Mammalian Cells: An Endonuclease Which Recognizes Lesions in DNA.- 95. Formation and Rejoining of DNA Strand Breaks in X (?)-Irradiated Cells in Relation to the Structure of Mammalian Chromatin.- 96. CHO Cell Repair of Single-Strand and Double-Strand DNA Breaks Induced by ?- and ?-Radiations.- 97. TheRepair of DNA Double-Strand Breaks in Mammalian Cells and the Organization of the DNA in Their Chromosomes.- 98. Kinetics of the Single-Strand Repair Mechanism in Mammalian Cells.- 99. Damage-Repair Studies of the DNA from X-Irradiated Chinese Hamster Cells.- 100. Current Knowledge of the Formation and Repair of DNA Double-Strand Breaks.- 101. The Dependence of DNA Sedimentation on Centrifuge Speed.- X. Relationships Among Repair, Cancer, and Genetic Deficiency.- 102. Relationships Among Repair, Cancer, and Genetic Deficiency: Overview.- 103. Direct Evidence That Pyrimidine Dimers in DNA Result in Neoplastic Transformation.- 104. Genetic Complementation Analysis of Xeroderma Pigmentosum.- 105. Repair Deficiency and Genetic Complementarity of Fibroblast Cells in Culture from Six Xeroderma Pigmentosum Patients.- 106. Use of an Enzymatic Assay to Evaluate UV-Induced DNA Repair in Human and Embryonic Chick Fibroblasts and Multinucleate Heterokaryons Derived from Both.- 107. The Use of Human Adenovirus 2 in the Study of Xeroderma DNA-Repair Defect.- 108. Host-Cell Reactivation of Irradiated Human Adenovirus.- 109. Animal Viruses, Radiation, Repair Mechanisms, and Cancer.- 110. Excision-Repair of 4-Nitroquinoline-1-oxide Damage Responsible for Killing, Mutation, and Cancer.- 111. Response to Homozygous and Heterozygous Xeroderma Pigmentosum Cells to Several Chemical and Viral Carcinogens.- 112. Cytotoxic and Mutagenic Effects of Carcinogenic Aromatic Amides and Polycyclic Hydrocarbons and Ultraviolet Irradiation in Normally Repairing and Repair-Deficient (Xeroderma Pigmentosum) Diploid Human Skin Fibroblasts.- 113. Lack of Direct Correlation Among Repair, Oncogenesis, and Lethality in Cultured Synchronized Mouse Fibroblasts Treated withN-Methyl-N?-nitro-N-nitrosoguanidine.- 114. Repair of DNA Strand Breaks in Progeric Fibroblasts and Aging Human Diploid Cells.- 115. DNA Repair and Life Span of Mammals.- 116. Increased DNA Excision-Repair as Pathogenesis of a Human Leukemia.- 117. Radiosensitization of a Human Cell Line Lacking Repair Replication.- 118. A Repressible DNA-Repair System in Mouse Neuroblastoma Cells.- 119. DNA Repair and UV Resistance in Human Melanoma.- 120. Faulty DNA Repair Following Ultraviolet Irradiation in Fanconi’s Anemia.- Author Index (to Parts A and B).- Subject Index (to Parts A and B).